Endotoxin Free Quanta Giga Kit

ADVANCED MICRODEVICES PVT. LTD.

21, Industrial Area, Ambala Cantt - 133006 (INDIA) Tel: 0171-2699290, 2699471, 2699274 Email: info@mdimembrane.com Website: www.mdimembrane.com

Table of Contents

Page

1.	Introduction	3
2.	Downstream Applications	3
3.	Storage Conditions	3
4.	Quality Assurance	4
5.	Safety Information	4
6.	Lot Release Criteria	4
7.	Technical Support	4
8.	Kit contents	5
9.	Specifications	5
10.	Principle	6
11.	Important Points to be Considered	7
12.	mdi Endotoxin Free Quanta Giga Procedure	8
13.	Protocol	9-11
14.	Trouble Shooting Guide	12-14
15.	Product Use Limitations	15
16.	Product Warranty and Satisfaction Guarantee	15
17.	Ordering Information	16

1. Introduction

mdi Endotoxin Free Quanta Giga Kit is uniquely designed to facilitate ultrapure pDNA (10mg) free from endotoxins (<0.1EU/ μ g), ideal for transfection even into highly sensitive mammalian cells. These kits offer high yields from both low copy as well as high copy number plasmids. The innovative buffer system and filter device provides efficient binding of pDNA onto the spin column.

Washing is done with the help of provided wash buffers in order to remove endotoxins, RNA, proteins and polysaccharides. The technology also does away with hasselsome gravitational waiting, phenol extraction (associated with desalting) and ethanol precipitation (associated with anion exchange based purification).

2. Downstream Applications

- 1. Automated Fluorescent Sequencing
- 2. Radioactive Sequencing
- 3. Restriction Digestion
- 4. Transfection (with highly sensitive mammalian cell lines)
- 5. Cloning
- 6. PCR

3. Storage Conditions

mdi Endotoxin Free Quanta Giga Kit should be stored at room temperature except the RNase A which should be stored at 2-8°C. The kit is stable for one year at room temperature without showing any reduction in performance and quality.

For longer storage, the entire kit can be stored at 2-8°C. In case precipitates are observed in buffer, re-dissolve all buffers before use at 37°C for few minutes. All buffers should be at room temperature before starting the protocol (Buffer MW should be at 27°C-37°C before starting the protocol).

Important

After adding RNase A to buffer 'M1', it should be stored at 2-8 $^{\circ}$ C and is stable for 6 months.

In case of any precipitation, re-dissolve the buffer by warming to 37 °C

4. Quality Assurance

mdi Endotoxin Free Quanta Giga Kit is designed for various predetermined specifications and user requirements such as yield, purity, ruggedness, shelf life and functional convenience.

These are produced through a well defined quality management system certified by Underwriters Laboratories, USA for ISO 9001 which ensures intra lot as well as lot to lot consistency.

5. Safety Information

The buffers and the reagents may contain irritants, so wear lab coat, disposable gloves and protective goggles while working with the **mdi** Endotoxin Free Quanta Giga Kit.

6. Lot Release Criteria

Each lot of **mdi** Endotoxin Free Quanta Giga Kit is tested against predetermined specifications to ensure consistent product quality.

7. Technical Support

At **mdi**, customers are our priority. We will share our experiences to assist you to overcome problems in general product usage as well as offer customize products for special applications. We will

* Stimulate problems, and suggest alternative methods to solve them.

*Make changes/improvements in our existing products/protocols.

* Develop special new products and system especially to satisfy your needs.

We welcome your feedback to improve our products.

8. Kit Contents

Pack Size	Quanta Giga Kit- 2	Storage Temperature
mdi Quanta Giga Spin Columns	2	RT
mdi Quanta Giga Filter Device (with Green Adaptor)	2	RT
Tube Extender	2	RT
mdi Green Adaptor (with black holder) for 45mm Neck Bottle	2	RT
45mm Neck Bottle* (1000ml) (Presterilized)	4	RT
50ml Sterile Centrifuge Tube*	4	RT
Buffer M1	110 x 2 ml	RT
Buffer M2	110 x 2 ml	RT
Buffer M3	110 x 2 ml	RT
Buffer MB	110 x 2 ml	RT
Buffer EF	16 x 2 ml	RT
Buffer MPW	110 x 2 ml	RT
Buffer MW	100 x 2 ml	RT
Buffer ME	10 x 2 ml	RT
RNase A (2.3 units/µl)	440 x 2 µl	2-8 °C
Handbook	1	
Certificate of Quality	1	

* To be arranged by the user.

Note: After adding RNase A, buffer M1 should be stored at 2-8 °C.

9. Specifications

Features	High Yield Protocol	
Type of Plasmid	High Copy Number Plasmid	Low Copy Number Plasmid
Capacity of Tube Extender (ml)	300	300
Binding Capacity of Spin Column (µg)	12,000	12,000
Maximum Culture Volume (litre)	2.5	2.5
Expected (µg) Yield of Plasmid	upto 10,000	upto 10,000

10. Principle

The **mdi** Endotoxin Free Quanta Giga kit allows the isolation of ultra pure pDNA which involves:

- 1. Lysis and Neutralization of Bacterial Culture
- 2. Capturing pDNA on spin column
- 3. Removal of Endotoxins
- 4. Washing
- 5. Elution

1. Lysis and Neutralization of Bacterial Culture

To efficiently lyse the bacterial culture, centrifuge it properly before addition of buffer 'M1' & 'M2'. The lysed culture is then neutralized with the help of buffer 'M3'.

2. Capturing pDNA on Spin Column

In order to facilitate adsorption of pDNA onto the spin columns, suitable conditions of salt concentration and pH are required which is achieved by addition of binding buffer 'MB'.

3. Removal of Endotoxins

Wash with buffer 'EF' to remove bacterial endotoxins and to achieve <0.1 EU (Endotoxin Units) per μ g of plasmid DNA in the final eluate.

4. Washing

Subsequent to pDNA binding onto the spin column, unwanted components like RNA, proteins and polysaccharides are washed away. Washing is done by buffer 'MPW' & 'MW'.

5. Elution

Salt concentration and pH of elution buffer is important for elution efficiency, elution occurs at basic conditions and low salt concentration. Elution is done with buffer 'ME'.

11. Important Points to be Considered

Optimization of Operating Conditions

All parameters regarding pDNA yield needs to be monitored like plasmid copy number, host strains, culture media, culture volume for obtaining expected high yields.

Centrifugation

All centrifugation steps should be carried out at room temperature at \geq 8,000 rpm

In case of choking of spin column, increase centrifugation time.

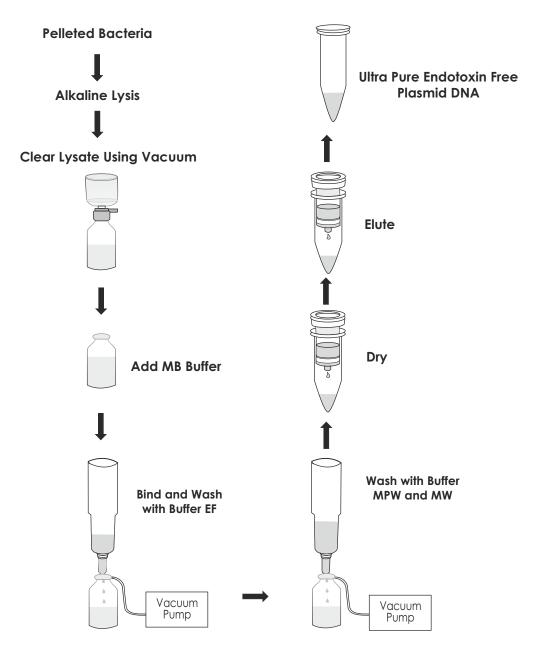
Lysis

After adding buffer M2 invert 4-6 times and incubate at room temperature for 5 minutes.

Washing

To remove residual wash buffer, spin the column for 1-2 minutes extra at \geq 10,000 rpm.

Elution


Elution buffer must be dispensed on to the center of the spin column for maximum elution efficiency. Incubation time should be increased by 2-3 minutes.

For obtaining highly concentrated pDNA, elution should be done in low salt concentration buffer 'ME'.

Yield

pDNA yield can be determined by spectrophotometer at 260nm and by Agarose gel electrophoresis. Purity is detected by A_{260}/A_{280} ratio lying between 1.8-2.0.

12. mdi Endotoxin Free Quanta Giga Procedure

Page 8 of 16

13. Protocol

Plasmid DNA purification using mdi Endotoxin Free Quanta Giga Kit

Important: This protocol is designed for the preparation of upto 10 mg of Endotoxin free (<0.1 EU/µg) plasmid DNA using the **mdi** Endotoxin Free Quanta Giga Kit from high copy as well as low copy number plasmid with a maximum culture volume of 2.5 litres or a pellet wet weight of 7.5gms from fermentation cultures.

- 1. Ensure that RNase A has been added to buffer 'M1' before starting the protocol.
- 2. All buffers should be at room temperature before starting the protocol.
- 3. Buffer MW should be at 27° C- 37° C before starting the protocol.
- 4. In case precipitates are observed in buffers, re-dissolve all buffers at 37°C for 30 to 60 minutes before use.
- Do not pipette out or measure the buffers while adding in different steps of protocol. Just pour the whole buffer quantity from the respective bottles except 5ml buffer ME should be used as prescribed in step 16.

Procedure:

- Centrifuge 2.5 litres of bacterial cultures from high copy number or low copy number plasmids in LB medium of O.D. 2.5 - 3.5 at 8000 rpm for 15 minutes or take a pellet wet weight of 7.5gms from fermentation cultures.
- 2. Resuspend the pelleted bacteria in 110 ml of buffer M1.

Note: For efficient lysis, it is important to use a vessel that is large enough to allow complete mixing of the lysis buffers. The bacteria should be resuspended completely by vortexing or pipetting up and down until no cell clumps remain.

3. Pour 110ml of Buffer M2. Gently mix by inverting 4-6 times and incubate at room temperature for 5 minutes.

Mix gently by inverting the tube .Do not vortex ,as this may result in shearing of genomic DNA. If necessary, continue inverting the tube until the solution becomes viscous and slightly clear. Do not allow the lysis reaction to proceed for more than 5 minutes.

Bottle containing buffer M2 should be closed immediately after use to avoid acidification from CO_2 in the air.

- 4. During incubation attach the **mdi** filter device onto a 45mm neck bottle of capacity of 1,000ml and connect to a vacuum source.
- 5. Pour 110ml of buffer M3 to the lysate, mix immediately by inverting 4-6 times. Proceed directly to the next step. Do not incubate lysate on ice.
- 6. Pour the lysate into the **mdi** filter device attached on to a 45mm neck bottle. **Incubate at room temperature for 10 minutes.**

Do not disturb the **mdi** Giga filter device during incubation. A precipitate containing proteins, genomic DNA and detergent will float and form a layer on the top of the lysate. This ensures convenient filtration without clogging. If the precipitate has not floated to the top of the lysate after incubation then carefully run a sterile pipet tip around the walls of the **mdi** Giga filter device.

- Switch on the vacuum source and apply vacuum till all liquid has been drawn through the mdi Giga filter device. Apply approx -300mmHg vacuum. (The recovered volume is approx. 260-280ml
- 8. Remove **mdi** Quanta Giga filter device from the 45mm neck bottle and pour 110ml buffer MB, close the lid and mix by inverting 4-6 times.

Incubate at room temperature for 5 minutes.

- Attach the mdi Quanta Giga spin column with tube extender to the new 45mm neck bottle (capacity 1000 ml) with the help of "Green adaptor" (with black holder).
- Transfer the lysate to the mdi Quanta Giga spin column and pass the lysate through the spin column by applying vacuum (approx -300mmHg) using a vacuum source. For this attach vacuum source to the outlet of the green adaptor attached to the 45mm neck bottle.

- 11. To achieve extremely low endotoxin level, add 16 ml of buffer EF to the Quanta Giga spin column and apply vacuum to pass half of the volume. Switch off the vacuum pump, disconnect the tubing and incubate at room temperature for 5 minutes. Reconnect the vacuum source and again apply vacuum to pass the remaining buffer through the column.
- 12. Wash the **mdi** Quanta Giga spin column with 110ml of buffer MPW by applying vacuum.
- 13. Wash the **mdi** Quanta Giga spin column with 100ml of buffer MW by applying vacuum.
- Remove mdi Quanta Giga spin column from the "Green adaptor" and also remove tube extender from the mdi Quanta Giga spin column.
- 15. Place the **mdi** Quanta Giga spin column in a sterile 50ml centrifuge tube and centrifuge for 10 minutes at \geq 8,000 rpm.

Important: This spin is necessary to remove residual wash buffer.

- 16. Place the mdi Quanta Giga spin column in a new sterile DNase free 50ml centrifuge tube and add 5ml of buffer ME to the center of spin column, let it stand for at least 5 minutes and then centrifuge for 10 minutes at 8,000 rpm.
- 17. Reload the above eluate in the same **mdi** Quanta Giga spin column, incubate for 5 minutes and elute in the same microcentrifuge tube by centrifuging at \geq 10,000 rpm for 10 minutes.

(Repeat step 17 once more to get high concentration of pDNA. Average eluate volume is 4ml from 5ml).

14. Trouble Shooting Guide

A. Poor or no DNA Yield 1. Plasmid did not propagate Please check that the conditions for optimal culture growth were met. 2. Poor bacterial growth Inoculate the culture under optimum conditions and ensure that all conditions are adequately met. If larger than recommended 3. Lysis was not efficient culture volume was used or cell density was very high (usually occurs if the culture is grown more than 16 hours). Reduce the culture volume and use culture grown between 12-16 hours. 4. Buffer M2 and MB Precipitated Redissolve by warming to 37°C. 5. Insufficient cell resuspension

The bacterial pellet formed after 15 minutes centrifugation should be resuspended completely in buffer 'M1' by pipetting up and down.

6. Column was overloaded	Can happen if larger than recommended culture volumes are used.	
7. Improper dispensing of elution buffer	The elution buffer must be dispensed properly onto the center of the column membrane for maximum elution efficiency.	
	Increase incubation time by 2-3 minutes.	
B: Low quality DNA		
B: Low quality DNA		
B: Low quality DNA Nuclease Contamination 	Use autoclaved plastic and glass wares.	

4. Plasmid Degradation

C: DNA does not perform well

1. Residual wash buffer in eluate	Spin the column for 2-3 minutes extra at \geq 10,000 rpm to remove residual wash buffer completely.
2. Eluted DNA shows frothing	Buffer MW may be cold it should be at 27°C-37°C temperature before starting the protocol

Do not incubate in buffer 'M2' for more than the prescribed time.

D: mdi Filter Device Clogs During Filtration of Lysate

- 1. Too large culture volume used
- 2. Inefficient mixing after addition of buffer 'M3'
- 3. Mixing too vigorous after addition of buffer 'M3'

Do not exceed the culture volume recommended in the protocol.

Mix well until a fluffy white material has formed.

After addition of buffer 'M3', the lysate should be mixed immediately but gently. Vigorous mixing disrupts the precipitate into tiny particles which may clog the **mdi** filter devices.

4. Lysate was not loaded immediately into the **mdi** filter device after addition or mixing of buffer 'M3' Load the lysate immediately after addition and mixing of buffer 'M3'. Decanting after incubation may disrupt the precipitate into tiny particles which may clog the **mdi** filter device.

5. Old pellet was used

Use fresh pellet.

E: mdi Quanta Giga Spin Column Choked

1. Lysate was not clear after filtration through **mdi** filter device

Do not apply extreme vacuum force as it may push tiny particles into the downstream of **mdi** filter device.

15. Product Use Limitations

mdi kits are developed and manufactured for research purpose only. The products are not recommended to be used for human, diagnostics or drug purposes for which these should be cleared by the concerned regulatory bodies in the country of use.

16. Product Warranty and Satisfaction Guarantee

All **mdi** products are guaranteed and are backed by our

- a. Technical expertise and experience of over 30 years.
- b. Special **mdi** process for consistency and repeatability.
- c. Strict quality control and quality assurance regimen.
- d. Certificate of analysis accompanied with each product.

mdi provides an unconditional guarantee to replace the kit if it does not perform for any reasons other than misuse. However, the user needs to validate the performance of the kit for its specific use.

17. Ordering Information

To order please specify as below:

UGLQGEKKIT1505A